Technical efficiency of multioutput farming: biodiversity, yield and profit

uschmutz@gardenorganic.org.uk

Dr Ulrich Schmutz, Garden Organic (Henry Doubleday Research Association)
Dr Bruce Pearce, Organic Research Centre, Elm Farm
Dr Unai Pascual, University of Cambridge
Dr Dan Rigby, University of Manchester

Quick project overview

- 4-year interdisciplinary project (£0.8m)
- RELU-Scale (Rural Economy and Land Use Programme funded)
- Scale effects of alternative agricultural systems
- Comparable set of 32 farms, as pairs
 organic & conventional in hotspot and coldspot
 landscapes
- 2006, 2007 and 2008 data

Hotspot versus Coldspot (10 x 10 km or 10,000 ha)

Hotspot > 10 % organic farming min 2 farms

Coldspot < 2 % organic farming max 2 farms

Farm selection

- -> select hotspot organic farm (limiting factor)
 - -> then match with conventional farm
 - similar in enterprise type, size, soil type...
 - close neighbourhood
 - for cropland proxy: winter wheat
 for grassland proxy: permanent pasture
 (both by far most common land-use types in UK)
 - Same in coldspot

Three potential study regions

Final sample farms

- Two regions:South central andMidland central
- Four clusters in each region
- Two landscapes in each cluster
- Pair of organic and conventional farm

3 crop and 3 grass fields per farm

Research design

- 32 farms with 3 wheat and 3 permanent grass fields
- Hotspot (8.9-36.8 % org. land use; av. 17%)
- Coldspot (0.5-3.3 % org. land use; av. 1.4%)
- Descriptive statistics of 178 wheat data sets and 216 grass data sets
- => Novel research design, <u>but</u> still limited sample and crop choice

Technical efficiency (TE)

- Technical efficiency (TE) definition:
 How efficient is a set of inputs used to produce an output?
- "the ability of a farm to produce as much output as possible with a specified level of inputs, given the existing technology."
- In ecological economics the yield and biodiversity are treated as equal outputs

TE example

Technical efficiency: Wheat

- Physical data collected on-farm (fertiliser, labour pesticides, livestock and cropping details)
- Socio-Economic data collected on-farm (yields, gross & net margin, marketing, social, demographics)
- TE analysis considers inputs and both outputs (grain yield and biodiversity) in physical quantities or inputs and grain yield output in monetary terms

RESULTS

- Plant biodiversity higher in hotspots, but even isolated organic farms have high biodiversity relative to conventional
- Bumblebees are more abundant in organic hotspots.
 Conventional farms in hotspots have greater abundance than isolated organics
- High densities of organic landscapes create higher biodiversity levels, with some cross over with nested conventional farms

Organic grain yields disappointing:

3.5 versus 8.3 t/ha (42%)

If straw yield and biomass yield (weeds) is included picture improves somewhat

Organic higher prices
 247 versus 132 £/t (187%)

Lower total costs
 336 versus 657 £/ha (51%)

Higher net margin
 660 versus 516 £/ha (128%)

 Organic on average lower percentage of subsidies in turnover

Yield distribution

- Physical TE analysis, considering multi-output yield and biodiversity showed higher technical efficiency on conventional, and on hotspot versus coldspot organic
- In monetary terms, no significant difference between organic and conventional; as before, higher efficiency in organic hotspot versus coldspots
- => concentration of organic farmland could provide relatively higher physical and monetary efficiencies when considering yield and biodiversity as dual output

organic hotspots versus coldspots

- higher membership in research associations
- more mixed farming (number of farm enterprises)
- less years farming experience and lower age (45 yr hot vs 53 cold)
- higher education (College University) 100% vs 56
- more triticale and rye, more legumes, more other crops
- less livestock units total (o.6 LSU/ha vs 1.0), and per grazing land

Conclusions

- Landscapes with higher concentration of organic have greater technical efficiency to produce yield & biodiversity
- Organic wheat yields on average disappointingly low (42% of conventional). However, best organic 70% of best conventional.
 Unlike in conventional, average organic far below best organic => organic has much room to improve
- 3. Best organic farms with high yields and biodiversity are the 'win-win' for dual output yield & biodiversity
- 4. Organic winter wheat to be replaced by triticale and other low input crops or population mixes
- 5. Good education and *on-farm* research key 'soft' inputs of technical efficient farms
- 6. Organic farms less affected by subsidies then conventional
- Conventional farms in hotspot organic landscapes also have higher levels of biodiversity (cross over or Public Good)

Support material

Birds: '3 down 2 up'

Corn Bunting Grey Partridge

Lapwing

Linnet

Skylark

Starling

Tree Sparrow

Yellowhammer

Common Whitethroat

Kestrel

Stock Dove

Goldfinch

Greenfinch

Jackdaw

Rook

Wood Pigeon

n.s. (not significant different)

_ *

_ *

n.s.

n.s.

n.s.

n.s.

n.s.

- *

n.s.

n.s.

_ *

n.s.

+ * (nest predator)

+ * (nest predator)

n.s.

Hoverflies

(Ecology Letters supplement)

- majority (62 %) of hoverflies found predatory = aphidophagous
- both, aphidophagous and non-aphidophagous species benefited from organic farming, but at different! aphidophagous hoverflies at landscape scale non-aphidophagous at farm scale
- 30% more hoverfly larvae on the organic farms, **however**, it is surprising to find higher numbers of aphidophagous adult hoverflies in conventional fields why?
- => spill over of more mobile adults from organic fields?
- => aphidophagous hoverflies abundance correlated to crop density (yield)?

Arable margins (1)

100	Organ	Conven	% org/
Wheat enterprise economics	ic	tional	conv.
Output grain & straw net (£/ha)	£961	£1,171	82%
Seed and seed treatment costs (£/ha)	£79	£41	193%
N £/ha (£ per kg straight N)	£0	£165	0%
P £/ha (£ per kg straight P)	£0	£37	0%
K £/ha (£ per kg straight K)	£0	£33	0%
Organic fertiliser costs (£/ha)	£16	£13	119%
Pesticide costs (£/ha)	£0	£94	0%
Variable costs (£/ha)	£95	£383	25%
Gross margin (£/ha)	£870	£794	110%
Syn. fert. application costs & labour (£/ha)	£0	£28	0%
Org. fert. application costs & labour (£/ha)	£17	£14	124%
Pesticide spraying cost & labour (£/ha)	£0	£35	0%
Agronomist labour (£/ha)	£1	£4	18%
Mechanical weeding & labour (£/ha)	£15	£0	
Casual labour £6/h (£/ha)	£4	£1	393%
Cultivations & labour ((£/ha)	£121	£111	109%
Combine & labour (£/ha)	£84	£79	107%
Labour & allocated fixed costs (£/ha)	£242	£272	89%
Total costs (£/ha)	£337	£655	51%
Net margin (£/ha)	£628	£522	120%

100	Organ	Conven	% org/
Wheat enterprise economics	ic	tional	conv.
Output grain & straw net (£/ha)	£961	£1,171	82%
Seed and seed treatment costs (£/ha)	£79	£41	193%
N £/ha (£ per kg straight N)	£0	£165	0%
P £/ha (£ per kg straight P)	£0	£37	0%
K £/ha (£ per kg straight K)	£0	£33	0%
Organic fertiliser costs (£/ha)	£16	£13	119%
Pesticide costs (£/ha)	£0	£94	0%
Variable costs (£/ha)	£95	£383	25%
Gross margin (£/ha)	£870	£794	110%
Syn. fert. application costs & labour (£/ha)	£0	£28	0%
Org. fert. application costs & labour (£/ha)	£17	£14	124%
Pesticide spraying cost & labour (£/ha)	£0	£35	0%
Agronomist labour (£/ha)	£1	£4	18%
Mechanical weeding & labour (£/ha)	£15	£0	
Casual labour £6/h (£/ha)	£4	£1	393%
Cultivations & labour ((£/ha)	£121	£111	109%
Combine & labour (£/ha)	£84	£79	107%
Labour & allocated fixed costs (£/ha)	£242	£272	89%
Total costs (£/ha)	£337	£655	51%
Net margin (£/ha)	£628	£522	120%

04 111			
Other explaining variables			
Marketable yield (t/ha)	3.5	8.4	42%
Price wheat (£/tonne)	£247	£129	192%
Field size	9.1	10.5	86%
Total agricultural area (ha)	460	563	82%
Winter wheat (ha)	39	133	30%
Farm production income (% of total)	95%	86%	111%
Mixed farming (number of enterprises)	3.6	2.4	152%

Market channels

Seed
 10% organic versus 2% conv * (<0.05)

- Milling or other food 46% organic versus 31% conv *
- Feed
 44% organic versus 67% conv *

Arable margins (3)

	Average	Hot	Cold	%	Hot	Cold	% H/C	Year 07	Year 08	%	Year 07	Year 08	%
Wheat enterprise economics		organic	organic	H/C	conv.	conv.		org.	org.	08/07	conv.	conv.	08/07
Output grain & straw net (£/ha)	£1,079	£900	£1,059	85%	£1,100	£1,244	88%	£976	£944	97%	£1,284	£1,093	85%
Seed and seed treatment costs (£/ha)	£57	£71	£92	77%	£45	£37	122%	£72	£85	118%	£36	£48	134%
N £/ha (£ per kg straight N)	£93	£0	£0		£182	£147	124%	£0	£0		£156	£178	114%
P £/ha (£ per kg straight P)	£21	£0	£0		£33	£41	81%	£0	£0		£30	£46	153%
K £/ha (£ per kg straight K)	£19	£0	£0		£25	£41	62%	£0	£0		£32	£38	117%
Organic fertiliser costs (£/ha)	£14	£21	£7	305%	£18	£9	204%	£16	£16	97%	£11	£10	95%
Pesticide costs (£/ha)	£53	£0	£0		£93	£95	98%	£0	£0		£81	£108	133%
Variable costs (£/ha)	£257	£92	£99	93%	£396	£370	107%	£89	£101	114%	£347	£428	124%
Gross margin (£/ha)	£828	£814	£961	85%	£717	£875	82%	£888	£850	96%	£952	£665	70%
Syn. fert. application costs & labour (£/ha)	£16	£0	£0		£29	£28	104%	£0	£0		£28	£28	98%
Org. fert. application costs & labour (£/ha)	£15	£23	£8	272%	£18	£9	199%	£18	£17	93%	£11	£11	99%
Pesticide spraying cost & labour (£/ha)	£20	£0	£0		£37	£32	115%	£0	£0		£32	£37	114%
Agronomist labour (£/ha)	£3	£1	£0		£5	£3	155%	£1	£1	103%	£4	£4	102%
Mechanical weeding & labour (£/ha)	£7	£12	£20	63%	£0	£0		£14	£16	113%	£0	£0	
Casual labour £6/h (£/ha)	£2	£3	£6	51%	£0	£2	0%	£5	£4	85%	£1	£1	62%
Cultivations & labour ((£/ha)	£115	£117	£126	93%	£112	£110	102%	£124	£117	94%	£111	£109	98%
Combine & labour (£/ha)	£81	£84	£85	99%	£77	£81	95%	£83	£85	101%	£79	£78	100%
Labour & allocated fixed costs (£/ha)	£259	£241	£245	98%	£279	£265	105%	£245	£239	98%	£267	£268	100%
Total costs (£/ha)	£516	£333	£343	97%	£675	£635	106%	£333	£340	102%	£613	£696	113%
Net margin (£/ha)	£569	£573	£716	80%	£439	£609	72%	£643	£611	95%	£686	£397	58%
Other explaining variables	1												
Marketable yield (t/ha)	6.3	3.3	3.9	87%	8.3	8.5	97%	3.3	3.7	111%	7.9	8.8	112%
Price wheat (£/tonne)	£180	£249	£243	102%	£120	£138	97 % 87%	£271	£223	82%	£151	£113	75%
Field size	9.9	10.1	7.3	139%	9.8	11.3	86%	8.3	9.9	119%	10.8	10.3	96%
i ielu size	3.3	10.1	7.5	139%	9.0	11.5	00%	0.5	9.9	11970	10.0	10.5	90%
Total agricultural area (ha)	513	712	180	396%	913	277	329%						
Winter wheat (ha)	88	53	25	214%	189	88	216%					1	and .
Farm production income (% of total)	90%	91%	100%	91%	84%	86%	98%						
Mixed farming (number of enterprises)	2.9	4.2	2.9	145%	1.8	2.8	63%						

Grass: physical data

0D400 (; 14	Organi	Conven	% org/	av	verag	Hot	Cold	%	Hot	Cold	%
GRASS fields	С	tional	conv.		е	organic	organic	H/C	conv.	conv.	H/C
Field size (ha)	5.5	6.0	92%		5.8	6.9	4.2	164%	5.8	6.2	93%
PP=1, TP=0	82%	80%	103%		81%	76%	89%	85%	87%	72%	121%
Grass=0, G/C=0.5, Clover=1	43%	14%	309%		28%	37%	48%	77%	11%	16%	69%
Age of ley (years)	28.7	28.2	102%		28.4	38.1	19.2	198%	28.7	27.6	104%
Use: graze=1, graze & 1x conserve=0.5, graze	84%	76%	110%		80%	93%	75%	124%	70%	82%	85%
Use: graze only=1	75%	59%	126%		67%	85%	64%	133%	46%	72%	64%
Use: mixed cut & graze =1	20%	35%	58%		28%	15%	26%	57%	48%	22%	217%
Use: cut only=1	6%	6%	100%		6%	0%	11%	0%	6%	6%	100%
Silage=1, Hay and haylage=0	71%	41%	176%		53%	38%	85%	44%	23%	73%	32%
Number of cuts	1.4	1.1	121%		1.2	1.0	1.5	67%	1.2	1.0	118%
Cut yield (t/ha)	10.7	14.0	77%		13.3	6.0	14.2	43%	18.8	6.3	297%
Months grazing	5.0	4.1	121%		4.7	4.7	5.1	93%	1.7	6.3	27%
Mixed grazing=1, only one livestock type=0	29%	22%	136%		25%	25%	34%	74%	14%	29%	47%
Cattle	81%	73%	112%		77%	71%	92%	77%	71%	75%	95%
Sheep	48%	42%	114%		45%	54%	42%	128%	29%	55%	54%
Average weight of stock (kg)	499	481	104%		490	511	489	104%	434	517	84%
Re-seeding=1, no=0	6%	2%	341%		4%	6%	6%	96%	0%	3%	0%
Syn. fertiliser=1, no=0	1%	39%	2%		20%	0%	2%		44%	33%	133%
N amount (kg/ha)	0.6	64	1%		32	0.0	1.3		58	70	83%
P amount (kg/ha)	0	2	0%		1	0	0		0	3	
K amount (kg/ha)	0	1	0%		1	0	0		0	3	
Organic fert.=1, no=0	45%	9%	533%		27%	44%	46%	96%	0%	17%	
Amount (t/ha)	17.5	12.2	143%		17.2	15.8	19.8	80%		12.2	
N (kg/ha) conversion: Poultry-manure 16kg	41	14	291%		27	41	40	104%	0	28	
P2O5 (kg/ha) conversion: Poultry-manure	23	6	397%		14	22	25	88%	0	12	
K2O (kg/ha) conversion: Poultry-manure 9	51	16	320%		34	46	56	83%	0	32	
Total N applied	41	78	53%		60	41	41	100%	58	98	59%
Total P applied	23	8	307%		15	22	25	88%	0	15	
Total K applied	51	17	296%		34	46	56	83%	0	34	
Total spray passes	0	1.1	0%		1.1				1.3	1.0	130%
Products per pass	0	1.0	0%		1.0				1.1	1.0	110%
Number of products used	0	0.3	0%		0.1	0	0		0.3	0.3	88%
Mechanical weed control (including topping, i	67%	44%	151%		56%	70%	64%	110%	43%	46%	92%
Number of mechanical weeding passes	1.4	1.6	82%		1.5	1.4	1.3	101%	1.8	1.5	119%
Cultivation done (one or more) excluding har	1%	4%	25%		2%	2%	0%		0%	7%	
Casual labour (hours/ha)	0.23	0.11	206%		0.17	0.10	0.35	30%	0.22	0.00	
Fences for strip grazing	21%	6%	383%		13%	13%	30%	44%	4%	7%	50%
Any flooding events, crop failure history?	6%	12%	52%		9%	5%	7%	70%	4%	20%	20%
Stewardship scheme yes=1, no=0	62%	30%	209%		46%	85%	39%	219%	22%	37%	60%

Grass: economic data (1)

	Organi	Conven	% org/
GRASS fields	С	tional	conv.
Re-seeding cost £/ha	£6	£2	341%
N £/ha (£ per kg straight N)	£0.6	£60	1%
P £/ha (£ per kg straight P)	£0	£2	0%
K £/ha (£ per kg straight K)	£0	£1	0%
Syn. fertiliser application costs (£/ha)	£0.1	£3.9	2%
Org. fertiliser costs (£/ha)	£27	£1	2055%
Org. fert. application costs (£/ha)	£28	£1	2055%
Spray costs (£/ha)	£0	£7	0%
Spraying cost & labour (£/ha)	£0	£2	0%
Mechanical weeding & labour (£/ha)	£14	£11	130%
Cultivations & labour (£/ha)	£0.1	£0.6	25%
Casual labour £6/h (£/ha)	£1.4	£0.7	206%
Fence moving labour £6/h (£/ha)	£13	£3	383%
Costs (£/ha)	£89	£96	93%

Grass: economic data (2)

	Hot	Cold	%	Hot	Cold	%	Year 07	Year 08	%	Year 07	Year 08	%
GRASS fields	organic	organic	H/C	conv.	conv.	H/C	org.	org.	08/07	conv.	conv.	08/07
Re-seeding cost £/ha	£6	£6	96%	£0	£3		£4	£8	181%	£1	£1	100%
N £/ha (£ per kg straight N)	£0	£1		£55	£66	83%	£30	£0		£63	£59	94%
P £/ha (£ per kg straight P)	£0	£0		£0	£4		£1	£0		£4	£1	35%
K £/ha (£ per kg straight K)	£0	£0		£0	£2		£1	£0		£2	£1	54%
Syn. fertiliser application costs (£/ha)	£0	£0		£4	£3	133%	£2	£0		£4	£4	85%
Org. fertiliser costs (£/ha)	£27	£26	101%	£0	£3		£18	£25	139%	£2	£0	
Org. fert. application costs (£/ha)	£28	£28	101%	£0	£3		£19	£26	139%	£2	£0	
Spray costs (£/ha)	£0	£0		£5	£8	66%	£3	£0		£8	£5	66%
Spraying cost & labour (£/ha)	£0	£0		£2	£2	76%	£1	£0		£2	£2	108%
Mechanical weeding & labour (£/ha)	£14	£13	106%	£11	£10	114%	£13	£14	105%	£13	£10	83%
Cultivations & labour (£/ha)	£0	£0		£0	£1		£0	£0		£0	£1	200%
Casual labour £6/h (£/ha)	£0.6	£2.1	30%	£1.3	£0.0		£0.6	£1.8	292%	£0.8	£0.8	100%
Fence moving labour £6/h (£/ha)	£8	£18	44%	£2	£4	50%	£11	£13	119%	£3	£5	200%
Costs (£/ha)	£83	£95	88%	£81	£110	74%	£104	£87	84%	£104	£90	87%

Soils Results: Key Findings (1)

- Organic management does not create many differences in soil properties relative to conventional management.
 Soil type is the main determinant of characteristics.
- There is a small increase in pesticide residues in conventional management soils, but all residues are below minimum threshold limits.
- There are significant differences in many characteristics between arable and permanent grassland.

Soils Results: Key Findings (2)

- Infiltration rates are significantly lower in conventional grass fields (stocking rates higher: 1.3 v 1.1)
- For typical Midland catchments, replacing conventional with organics would cause peak run-off in storm events (20mm/hr) to fall from 1750 m³/ha to 1250 m³/ha.
- This would reduce a 1 in 10 year flooding event to a 1 in 2.
- Similar run-off reductions might also be caused due to increasing grass coverage as organic levels in catchments increase

Social aspects: key results (1)

- Perceptions of 'good' farming critical to influences: tidiness, timeliness, doing the job right
- 'Almost organic anyway' attitudes to conversion (prior to conversion; and extensification)
- Longevity/viability since organic establishment influences levels of respect amongst conventional farmers (Southern cluster)

Social aspects: key results (2)

"in the old days it was, we [organic farmers] were a joke you know, we were treated as a joke... [it] is increasingly becoming oh it doesn't look a mess, and he is still making money and he is still employing Andrew, whereas I made Fred redundant and all the rest of it."

Integrated research: "Data Envelopment Analysis" (DEA)

Various types of frontier efficiency analysis exist: Deterministic Vs. Stochastic

DEA is a deterministic linear programming technique largely the result of multi-disciplinary research in economics, engineering and management

A basic DEA study results in an efficiency measure that reflects the distance from each unit to a technological frontier.

DEA

DEA can handle <u>multiple inputs & outputs</u>

It possible to evaluate all:

TE

Scale efficiency (related to 'economies of scale')

Profit potential

Technical progress (shifts of the frontier)

No requirement of any assumption about functional forms relating inputs to outputs.

Inputs & Outputs can have different units

References (TE-organic farming)

- Tzouvelekas et al (2001a) 'Technical efficiency of alternative farming systems: the case of Greek organic and conventional olive-growing farms' Food Policy 26(6)
- Lansink & Pietola (2002) 'Effciency and productivity of conventional and organic farms in Finland 1994-1997', European Review of Agricultural Economics 29(1)
- Fernandes and Pascual (2005). Análise da eficiência da agricultura familiar agroecologista: o caso da Arpasul, Brasil (mimeo).
- Madau (2005) 'Technical Efficiency in Organic Farming: an Application on Italian Cereal Farms using a Parametric Approach'. XIth Congress of the European Association of Agricultural Economics, Copenhagen, August 24-27
- Tzouvelekas et al (2001b) 'Economic Efficiency in Organic Farming: Evidence From Cotton Farms in Viotia, Greece', Journal of Agricultural & Applied Economics: 33(1)

